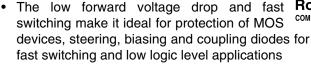
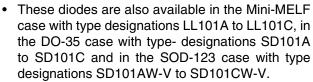
SD101AWS-V, SD101BWS-V, SD101CWS-V




Vishay Semiconductors

Small Signal Schottky Diodes

Features

- For general purpose applications
- The SD101 series is a Metal-on-silicon Schottky barrier device which is protected by a PN junction guard ring

- AEC-Q101 qualified
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

RoHS COMPLIANT

Mechanical Data

Case: SOD-323

Weight: approx. 4.3 mg
Packaging Codes/Options:

GS18/10 k per 13" reel (8 mm tape), 10 k/box GS08/3 k per 7" reel (8 mm tape), 15 k/box

Parts Table

Part	Ordering code	Type Marking	Remarks
SD101AWS-V	SD101AWS-V-GS18 or SD101AWS-V-GS08	SA	Tape and Reel
SD101BWS-V	SD101BWS-V-GS18 or SD101BWS-V-GS08	SB	Tape and Reel
SD101CWS-V	SD101CWS-V-GS18 or SD101CWS-V-GS08	SC	Tape and Reel

Absolute Maximum Ratings

T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Part	Symbol	Value	Unit
		SD101AWS-V	V_{RRM}	60	V
Peak inverse voltage		SD101BWS-V	V _{RRM}	50	V
		SD101CWS-V	V _{RRM}	40	V
Power dissipation (Infinite Heat Sink)			P _{tot}	150 ¹⁾	mW
Forward continuous current			I _F	30	mA
Maximum single cycle surge	10 μs square wave		I _{FSM}	2	Α

¹⁾ Valid provided that electrodes are kept at ambient temperature

SD101AWS-V, SD101BWS-V,

Vishay Semiconductors

Thermal Characteristics

T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Value	Unit
Thermal resistance junction to ambient air		R_{thJA}	650 ¹⁾	K/W
Junction temperature		T _j	125 ¹⁾	°C
Storage temperature range		T _{stg}	- 65 to + 150	°C

¹⁾ Valid provided that electrodes are kept at ambient temperature

Electrical Characteristics

T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Reverse breakdown voltage	I _R = 10 μA	SD101AWS-V	V _(BR)	60			V
		SD101BWS-V	V _(BR)	50			V
		SD101CWS-V	V _(BR)	40			V
Leakage current	V _R = 50 V	SD101AWS-V	I _R			200	nA
	V _R = 40 V	SD101BWS-V	I _R			200	nA
	V _R = 30 V	SD101CWS-V	I _R			200	nA
Forward voltage drop	I _F = 1 mA	SD101AWS-V	V _F			410	mV
		SD101BWS-V	V_{F}			400	mV
		SD101CWS-V	V_{F}			390	mV
	I _F = 15 mA	SD101AWS-V	V_{F}			1000	mV
		SD101BWS-V	V _F			950	mV
		SD101CWS-V	V _F			900	mV
Junction capacitance	V _R = 0 V, f = 1 MHz	SD101AWS-V	C _D			2.0	ns
		SD101BWS-V	C _D			2.1	ns
		SD101CWS-V	C _D			2.2	ns
Reverse recovery time	$I_F = I_R = 5 \text{ mA},$ recover to 0.1 I_R		t _{rr}			1	ns

Typical Characteristics

T_{amb} = 25 °C, unless otherwise specified

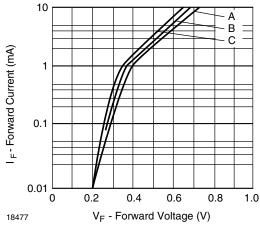


Figure 1. Typical Variation of Forward Current vs. Forward Voltage

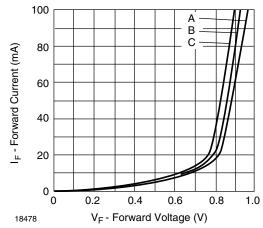


Figure 2. Typical Forward Conduction Curve

SD101AWS-V, SD101BWS-V,

Vishay Semiconductors

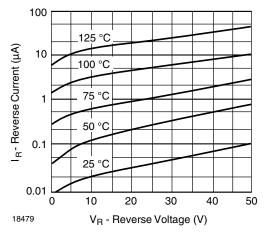


Figure 3. Typical Variation of Reverse Current at Various Temperatures

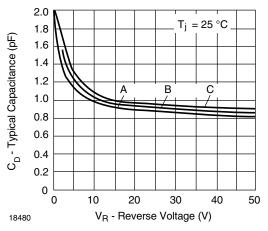
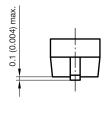
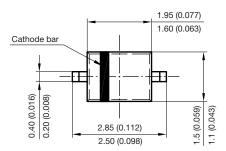
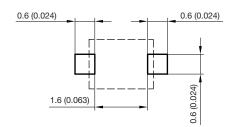




Figure 4. Typical Capacitance Curve as a Function of Reverse Voltage


Package Dimensions in millimeters (inches): SOD-323

Foot print recommendation:

Document no.:S8-V-3910.02-001 (4) Created - Date: 24.August.2004 Rev. 5 - Date: 23.Sept.2009

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08

www.vishay.com